
An elliptic inclusion with imperfect interface in
anti-plane shear

H. Shen, P. Schiavone*, C.Q. Ru, A. Mioduchowski

Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 2G8

Received 25 November 1998; in revised form 8 March 1999

Abstract

A semi-analytic solution is developed for the problem associated with an elliptic inclusion embedded within an
in®nite matrix in anti-plane shear. The bonding at the inclusion-matrix interface is assumed to be homogeneously

imperfect. The interface is modeled as a spring (interphase) layer with vanishing thickness. The behaviour of this
interphase layer is based on the assumption that tractions are continuous but displacements are discontinuous
across the interface. Complex variable techniques are used to obtain in®nite series representations of the stresses

induced within the inclusion. The results obtained demonstrate how the (non-uniform) stress ®eld and the average
stresses inside the inclusion vary with the aspect ratio of the inclusion and the parameter describing the imperfect
interface. In addition, it is shown that, in some cases (depending on the aspect ratio of the ellipse), it is possible to

identify speci®c values of the interface parameter which correspond to maximum peak stress along the
interface. 7 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Problems involving elastic inclusions with imperfect bonding at the inclusion-matrix interface

(imperfect interface) have received a considerable amount of attention in the literature (see, Ru and

Schiavone (1997) for a recent survey and bibliography). Interest in these problems is motivated by the

study of interface damage in composites (for example, debonding, sliding and/or cracking across an

interface) and its subsequent e�ect on the e�ective properties of composites.

One of the more widely used models of an imperfect interface (see, for example, Aboudi, 1987;
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Achenbach and Zhu, 1989; Hashin, 1990, 1991a,b, 1992; Gao, 1995; Ru and Schiavone, 1997) is based
on the assumption that tractions are continuous but displacements are discontinuous across the
interface. More precisely, jumps in the displacement components are assumed to be proportional, in
terms of `spring-factor-type' interface parameters, to their respective interface traction components.
When these interface parameters are assumed to be uniform along the entire length of the material
interface, the interface model is said to represent a homogeneously imperfect interface. Using this model,
Hashin (1991b) examined the case of a spherical inclusion imperfectly bonded to a three-dimensional
matrix. In contrast to the case of perfect bonding (see, for example, Eshelby, 1957), Hashin found that,
under a remote uniform stress ®eld, the state of stress inside the inclusion is no longer uniform. The
analogous result in plane elasticity has been established by Gao, 1995 for a circular inclusion (see also
Qu, 1993) for similar results concerning an elliptic inclusion with a `slightly weakened interface'). To our
knowledge, despite its importance to composite mechanics and the study of elastic inclusions with
imperfect interfaces, the solution of the problem of an elliptic inclusion with homogeneously imperfect
interface has not been recorded in the literature.

In the present work, we consider the problem associated with an elliptic elastic inclusion embedded
within an in®nite matrix in anti-plane shear, when the interface is homogeneously imperfect. Using
complex variable techniques we obtain in®nite series representations of the corresponding stresses which,
when evaluated numerically, demonstrate how the (non-uniform) stress ®eld and the average stress
within the inclusion vary with the parameter describing the imperfect interface. In addition, we show
that, in some cases (depending on the aspect ratio of the inclusion), interfacial stresses are found to be
non-monotonic functions of the interface parameter. In these cases, it is possible to identify speci®c
values of the interface parameter which correspond to maximum peak stress along the interface.

2. Problem formulation

Consider a domain in R 2, in®nite in extent, containing a single internal elastic inclusion, with elastic
properties di�erent from those of the surrounding matrix. The linearly elastic materials occupying the
matrix and inclusion are assumed to be homogeneous and isotropic with associated shear moduli m1 and
m2, respectively. At in®nity, the prescribed deformation is that of a simple shear. We represent the
matrix by the domain S1 and assume the inclusion occupies an elliptic region S2. The ellipse G will
denote the inclusion-matrix interface. In what follows, the subscripts 1 and 2 will refer to the regions S1

and S2, respectively, (x, y ) is a generic point in R 2 and w(x, y ) will denote the elastic (anti-plane)
deformation at the point (x, y ).

We assume that the interface is homogeneously imperfect as described in Section 1. The interface
condition is therefore given by (see Ru and Schiavone, 1997)

h
�
w1 ÿ �w2 � o��� � m1

@w1

@n
� m2

@w2

@n
, on G, �1�

where h = constant is the imperfect interface parameter, n is the outward unit normal to G and o��x,y�
represents the additional displacement induced within the inclusion by a uniform eigenstrain speci®ed
below. We note that as h approaches in®nity in Eq. (1), we must have w1 � w2 � o��x, y� so that, in this
case, Eq. (1) describes a perfectly bonded interface (see, for example, Ru and Schiavone, 1996).
Similarly, if h = 0, Eq. (1) reduces to the case of a traction-free interface, which characterizes the
complete debonding of the inclusion from the matrix. Consequently, the following boundary value
problem describes anti-plane shear deformations of an elliptic inclusion with the imperfect interface of
the form (1) (see Ru and Schiavone, 1997):
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r 2w1 � 0, in S1, r 2w2 � 0, in S2

h�w1 ÿ w2 � � m2
@w2

@n
� ho�, m1

@w1

@n
� m2

@w2

@n
on G

w1�x,y� � c1xÿ c2y� 0�1�, x 2 � y241 �2�
Here, ca, a � 1, 2 are given constants (remote stress parameters).

We denote the complex potentials corresponding to wa�x, y�, a � 1, 2, by F1�z� and F2�z�,
respectively. Since F1�z� and F2�z� are analytic within S1 and S2, respectively, we can write,

2wk � Fk�z� � Fk�z�

sxz ÿ isyz � mkF
0
k�z� z 2 Sk �k � 1, 2� �3�

where sxz and syz represent the corresponding stress components in anti-plane shear. Noting that

2
@w2

@n
� F 02�z� ein�z� � F 02�z� eÿin�z�, z 2 G,

where, ein�z� represents (in complex form) the outward unit normal to G at z. The boundary value
problem (2) can now be re-written in complex form as:

F1�z� � dF2�z� � �1ÿ d�F2�z� � a
h
F 02�z� ein�z� � F 02�z� eÿin�z�

i
� o��z�, z 2 G

F1�z� � Az� 0�1�, jzj41: �4�
Here

A � c1 � ic2, a � m2
2h

r0, d � m1 � m2
2m1

>
1

2
, o� � oz� oz �5�

and o is a known complex constant determined by the uniform eigenstrain given in the inclusion.

3. Conformal mapping

Let G be an ellipse with centre at the origin of the complex z-plane, semi-major and semi-minor axes
a and b, respectively and foci at x �22R, R> 0. Consider the following conformal mapping from the
complex z-plane to the complex x-plane (Muskhelishvili, 1963):

z � m�x� � R

�
x� 1

x

�
, R �

����������������
a2 ÿ b2
p

2
> 0, x � z� iZ � r eiy �6�

As illustrated in Fig. 1, we imagine the enclosed region S2 to be cut along the segment D1 � f�x, 0�:ÿ
2RRxR2Rg connecting the foci of the ellipse. This cut may be thought of as an ellipse, which is
confocal with G but whose minor axis is zero. Hence, the cut region in S2 may be thought of as the
limiting case of a region between two confocal ellipses.

Using Eq. (6), we map the ellipse x � R�R� � 1
R� �cos y, y � R�R� ÿ 1

R� �sin y and its exterior region in
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the complex z-plane, onto and outside, respectively, the circle of radius R� in the complex x-plane. Here

R� � a�
�������������������
a2 ÿ 4R2
p

2R
�

������������
a� b

aÿ b

r
> 1 �7�

Since, F2�z� is analytic in S2, it follows that

F2�z� � F2�z�, z 2 D1 �8�

4. General solution

For convenience, we write

Fa�z� � Fa�m�x�� � Fa�x�, a � 1,2,

so that, in the x-plane, condition (8) becomes

F2�x� � F2

ÿ
x
�
, 8x:jxj � 1

Using (6), writing x � reiy and noting that (England, 1971)

ei2n�z� � x2

r2
m 0�x�
m 0�x� , ein�z� � x

r

m 0�xi�
jm 0�x�j , eÿin�z� � x

r

m 0�x�
jm 0�x�j ,

the problem (4) reduces to ®nding analytic functions Fa�x�, a � 1, 2 in the regions x > R� and
1 < x < R�, respectively, such that

F1�x� � dF2�x� � �1ÿ d�F2�x� � b
�
xF 02�x� � xF 02�x�

�
� om�x� � om�x�,jxj � R�, �9�

F2�x� � F2

ÿ
x
�
, jxj � 1, �10�

F1�x� � ARx� 0�1�, jxj41: �11�

Fig. 1. The conformal mapping from z-plane to z-plane.
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Here,

b�y� � a
R�jm 0�x�j �

a

b
�������������������������
1� b�sin2 y

p , b� � a2 ÿ b2

b2
> 0 �12�

Since F1�x� is analytic in jxj > R�, using Eq. (11), it can be represented there by the following Laurent
series

F1�x� � ARx�
X1
n�0

dnx
ÿn �13�

where dn are unknown coe�cients to be determined. Similarly, F2�x� is analytic in the ring 1 < jxj < R�,
and hence has Laurent series representation

F2�x� �
X1

n�ÿ1
bnx

n �14�

where, again, bn are unknown constants to be determined.
From Eq. (10), letting x � r eiy we obtain (see, for example, Muskhelishvili, 1963)

bn � bÿn, f2�x� �
X1
n�0

bn�xn � xÿn� �15�

In the following equations, since the constants b0 and d0 make no contribution to the calculation of
stresses, they will be taken to be zero. The problem is then reduced to the determination of the complex
coe�cients dn and bn �n � 1, 2). The interface condition (9) can be rewritten as

F1�x� � dF2�x� � �dÿ 1�F2�x� � b
h
xF 02�x� � �xF 02�x�

i
� om�x� � om�x�, jxj � R� �16�

Using (13) and (15), the left-hand side of Eq. (16) becomes

ARxÿ d
X1
n�1

bnx
n � �dÿ 1�

X1
n�1

bnx
ÿn �

X1
n�1

dnx
ÿn ÿ d

X1
n�1

bnx
ÿn � �dÿ 1�

X1
n�1

bnx
n

Since the above expression is real, we obtain (setting x � R�eiy�,

d1 � �AR�R�� 2��2dÿ 1�
�
b1 ÿ �b1�R�� 2

�
when n � 1 �17�

dn � �2dÿ 1�
�
bn ÿ �bn�R��2n

�
when n 6�1 �18�

Using the expressions (17) and (18) to eliminate dn �n � 1, 2: : : �, the left-hand side of Eq. (16) becomes

F1�x� ÿ dF2�x� � �dÿ 1�F2�x� � RR�
ÿ
A eiy � �A eÿiy

�
ÿ d

X1
n�1

�
bn einy

� �bn eÿiny
��R��n��dÿ 1�

X1
n�1
�R��ÿn

�
�bn einy � bn eÿiny

�
, jxj � R�: �19�

Noting Eqs. (6), (12) and (16) and setting x � R� eiy, the interface condition (16) is further reduced to:
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�������������������������
1� b�sin2 y

p (
RR�

"�
Aÿ oÿ �o

R�2

�
eiy �

�
�Aÿ �oÿ o

R�2

�
eÿiy

#
ÿ
X1
n�1

d
�
bn einy � �bn eÿiny

��R��n
�
X1
n�1
�dÿ 1��R��ÿn

�
�bn einy � bn eÿiny

�)
�
X1
n�1

an
b

��R��nÿbn einy

� �bn eÿiny
�
ÿ �R��ÿn

ÿ
bn eÿiny � �bn einy

��
�20�

Substituting the expression (see Appendix A)

�������������������������
1� b�sin2 y

p
�

X1
k�ÿ1

I2k ei2ky1
XMÿ1
k�0

I2k
ÿ

ei2ky � eÿi2ky
�

� I2M
ei2My � eÿi2My ÿ Z

ÿ
ei2�Mÿ1�y � ei2�1ÿM�y

�
1� 1

R�4
ÿ ei2y � eÿi2y

R�2

�21�

into Eq. (20) (here M is a su�ciently large integer) and letting T � Aÿ oÿ �o
R�2 , we obtain

RR�
(XMÿ1

k�0
I2k
ÿ

ei2ky � eÿi2ky
��
1� 1

R�4
ÿ ei2y � eÿi2y

R�2

�
� I2M

h
ei2My � eÿi2My ÿ Z

ÿ
ei2
�Mÿ1�y

� ei2
�1ÿM�y�i)� ÿT eiy � �T eÿiy

�
� d

(XMÿ1
k�0

I2k
ÿ

ei2ky

� eÿi2ky
��
1� 1

R�4
ÿ ei2y � eÿi2y

R�2

�
� I2M

h
ei2My � eÿi2My ÿ Z

ÿ
ei2
�Mÿ1�y

� ei2
�1ÿM�y�i)�X1

n�1

�
bn einy � �bn eÿiny

��R��n��1ÿ d� �
(XMÿ1

k�0
I2k
ÿ

ei2ky

� eÿi2ky
��
1� 1

R�4
ÿ ei2y � eÿi2y

R�2

�
� I2M

h
ei2My � eÿi2My ÿ Z

ÿ
ei2
�Mÿ1�y

� ei2
�1ÿM�y�i)�X1

n�1

�
�bn einy � bn eÿiny

��R��ÿn�a
b

�
1� 1

R�4
ÿ ei2y � eÿi2y

R�2

�
�
X1
n�1

n
�
bn einy

� �bn eÿiny
��R��nÿa

b

�
1� 1

R�4
ÿ ei2y � eÿi2y

R�2

�X1
n�1

n
�

�bn einy � bn eÿiny
��R��ÿn �22�

Furthermore, noting that I2k � Iÿ2k, and equating coe�cients of einy in the interface condition (22), we
®nally obtain

Xmÿ1=2
j�0

 XM
k�0

DnkjI2k � Gnj

!
b2j�1 �

Xmÿ1=2
j�0

 XM
k�0

EnkjI2k � Pnj

!
�b2j�1 �

XM
k�0

FnkI2k �23�
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Here, n � 1,3,5 . . .m, where m is odd and always less than M; Dnkj, Enkj are real constants; Gnj, Pnj are
real constants related to the imperfect interface parameter h and Fnk are complex constants. For
example, by comparing Eqs. (22) and (23), when M � 5, n � 3 �m � 5), we obtain

D300 � ÿ d
R�

; D310 � dR� � 2dÿ 1

R�3
; D320 �

�1ÿ 2d�
R�

� 1ÿ d
R�5

; D330 � ÿ1ÿ d
R�3

; D340 � D350 � 0; G30

� ÿ a
bR�

E300 � ÿ1ÿ d
R�3

; E310 � 1ÿ d
R�5
ÿ 2dÿ 1

R�
; E320 � dR� � 2dÿ 1

R�3
; E330 � ÿ d

R�
; E340 � E350 � 0; P30

� a
bR�3

D301 � d

�
R�3 � 1

R�

�
; D311 � ÿ2dR� ÿ 1ÿ d

R�5
; D321 � ÿ1ÿ d

R�5
; D331 � �1ÿ d�

�
1

R�3
� 1

R�7

�
; D341

� D351 � 0;

G31 � 3a
b

�
R�3 � 1

R�

�

E301 � �1ÿ d�
�

1

R�3
� 1

R�7
ÿ 1

R�5

�
; E311 � 1ÿ d

R�5
; E321 � dR�; E331 � d

�
R�3 � 1

R�

�
; E341

� ÿdR�; E351 � 0;

P31 � ÿ3a
b

�
1

R�3
� 1

R�7

�

D302 � ÿdR�3; D312 � d
ÿ
R�5 � R�

�
; D322 � ÿdR�3; D332 � ÿ1ÿ d

R�5
; D342 � �1ÿ d�

�
1

R�5
� 1

R�9

�
;

D352 � ÿ1ÿ d
R�5

Z; G32 � ÿ5a
b
R�5

E302 � ÿ�1ÿ d� 1

R�7
; E312 � �1ÿ d�

�
1

R�5
� 1

R�9

�
; E322 � ÿ�1ÿ d� 1

R�7
; E332 � dR�3; E342

� d
ÿ
R�5 � R�

�
;

E352 � ÿdR�5Z; P32 � 5a
b

1

R�7
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F30 � 0; F31 � T

�
1� 1

R�4

�
ÿ

�T

R�2
; F32 � �T

�
1� 1

R�4

�
ÿ T

R�2
; F33 � ÿ

�T

R�2
; F34 � F35 � 0

5. Numerical examples and discussion

We compute (numerically) the complex coe�cients of the Laurent series in Eq. (15) for a wide range
of imperfect interface parameters and aspect ratios a/b.

5.1. The case of remote mechanical loading

We consider ®rst the case of remote loading in the absence of any eigenstrain inside the inclusion.
That is, when T � A, �T � �A:

Let b � 1 and consider the case of an epoxy matrix surrounding a glass inclusion. The material
properties of the matrix and the inclusion are described by:

E1 � 2:76 Gpa, n1 � 0:35, m1 � 1:02 Gpa

E2 � 72:4 Gpa, n2 � 0:2, m2 � 30:17 Gpa,

where, E is Young's modulus and n is Poisson's ratio.
It is well known that, in the case of a perfectly bonded interface, the stress and strain ®elds inside an

elliptic inclusion are uniform (see, for example, Ru and Schiavone, 1996). In fact, when h � 1 �a � 0,
perfect bonding) and Gnj � Pnj � 0 in (23), we obtain

dR�b1 � 1ÿ d
R�

�b1 � ARR�, b1 � R

d
Aÿ d� �A

1ÿ d�2
, b3 � b5 � � � � � 0 where d� � 1ÿ d

dR�2

Consequently,

F2 � b0 � R

d
Aÿ d� �A

1ÿ d�2
z

R
,

which coincides with the result obtained in Ru and Schiavone (1996) for an elliptic inclusion with
perfectly bonded interface.

In practice, the imperfect interface parameter h is rendered dimensionless by division m1=b, where m1 is
the shear modulus of the matrix and b is the minor axis of the ellipse.

In the case of the homogeneously imperfect interface, numerical computation of the corresponding
series demonstrates that the non-uniformity of the stress ®eld inside the inclusion depends signi®cantly
on the aspect ratio of the ellipse and the imperfect interface parameter.

In what follows, we present results for three di�erent ranges of the aspect ratio a/b. In each case, the
number of coe�cients in the corresponding series is chosen so that, the error in the numerical
calculations is maintained below 1%. This is achieved simply by calculating an increasing sequence of
partial sums from each of the (uniformly convergent) in®nite series representations, and noting the
minimum number of coe�cients required to ensure that the di�erence between any two subsequent
partial sums is less than 1%.

Case 1. When 1 < a=bR3, only the coe�cients b1 and b3 are necessary to achieve the desired accuracy.
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In this case, we ®nd that

F21b0 � �b1 ÿ 3b3�
�
z

R

�
� b3

�
z

R

�3

�24�

We obtain values of b1 and b3 by selecting m = 3 and M = 7 in Eq. (23). It should be noted that the
result for a=b � 1 cannot be obtained directly from the numerical analysis but is available analytically.
The relationship between average stress and the imperfect parameter h, in this case, is given in Fig. 2.
The average stress inside the inclusion is de®ned as

�sij �

�
A

sijdA

A
�25�

where A is the area of the ellipse.
In Figs. 3 and 4, the stress distribution along the interface and the regions of the ellipse described by

the lines x = 0 and y = 0 is plotted for the value a=b � 3 and di�erent values of the parameter h. It is
clear that the non-uniformity of the stresses inside the inclusion is very strong. In fact, when h � 5E� 5,
the local stresses reach maximum values.

Fig. 2. E�ect of the imperfect interface parameter h on the average stress � �sxz
S0xz
� inside inclusion when the remote stress is S0xz:
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Case 2. When 3 < a=bR6, it is su�cient to consider only the coe�cients b1, b3 and b5 to obtain the
required accuracy. In this case, we obtain

F21b0 � �b1 ÿ 3b3 � 5b5�
�
z

R

�
� �b3 ÿ 5b5�

�
z

R

�3

�b5
�
z

R

�5

�26�

We may obtain values of b1, b3 and b5 by selecting m = 5 and M = 9 in Eq. (23). The corresponding
stress distributions are presented in Figs. 5±7.

Fig. 3. Non-uniformity of stress along the interface when the remote stress is S0xz with a=b � 3:

Fig. 4. The stress distribution along the x and y axes for remote stress S0xz with a=b � 3:
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Case 3. When 6 < a=bR9, only b1, b3, b5 and b7 are required to obtain the desired accuracy. In this
case, we obtain

F21b0 � �b1 ÿ 3b3 � 5b5 � 28b7 � z
R
� �b3 ÿ 5b5 � 14b7�

�
z

R

�3

��b5 ÿ 7b7�
�
z

R

�5

�b7
�
z

R

�7

�27�

We may obtain values of b1, b3, b5 and b7 by selecting m = 7, M = 11 in Eq. (23). The corresponding
stress distributions are presented in Figs. 8±10.

It is noted that for values of the aspect ratio a=br10, the procedure is similar although a much larger
number of coe�cients is required to evaluate the corresponding series to the desired accuracy.

The above results indicate that the average stress alone is insu�cient to describe the debonding and
failure of the interface. It is the local stress (maximum) that decides where the debonding and failure
will occur. For example, from the stress distribution along the interface in Fig. 9, the maximum local
stresses occur at y � 0, p: These stresses are much greater than those in the case of perfect bonding
although the average stresses (see Fig. 8) are smaller. From Figs. 2, 5 and 8, it is clear that the e�ect of
the imperfect interface parameter h on the average stress inside the inclusion increases with the aspect
ratio of the ellipse.

Fig. 5. E�ect of the imperfect interface parameter h on the average stress � �sxz
S0xz
� inside inclusion, when the remote stress is S0xz:
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It should be emphasized that the imperfect interface condition (1) arises from the assumption of a
thin ¯exible coating of thickness t� b with shear modulus mc � minfm1, m2g between the inclusion and
the matrix (Hashin, 1991b). This de®nes the physical meaning of the parameter h. In practice, the
interface model may be represented by an adhesive layer. For the present case, h is in the range 1E� 0
to 1E� 6, which demonstrates that the stress ®eld is closely related to this physical meaning of h. In
addition, the local stresses along the (imperfect) interface itself reach maximum values when the
interface parameter h reaches a particular value �h�). For the example under consideration, the
relationship between the parameter h� and the aspect ratio a/b is represented in Fig. 11.

Fig. 6. Non-uniformity of stress along the interface when the remote stress is S0xz with a=b � 6:

Fig. 7. stress distribution along the x and y axes for remote stress S0xz with a=b � 6:
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Since values of h� correspond to local maximum stress and are related to the mechanical properties
and thickness of the adhesive layer between the inclusion and the matrix, the parameter h� may be used
as a control parameter when designing composites involving elastic inclusions. For example, for the
remote loading S0xz and aspect ratio a=b � 1 (circular inclusion), the peak stress corresponds to the
value h� � 1 (perfect bonding). However, when a=b � 3, the peak stress corresponds to h� � 5E� 5:
Since h� is rendered dimensionless by division m1=b, for a speci®c aspect ratio, we could avoid the peak
stress by adjusting m1 (the shear moduli of the matrix), and the thickness of the interphase layer (related
to b ).

In order to better understand the relationship between the imperfect interface parameter h and the
failure of the interface, Fig. 12 plots the peak stresses as a function of the imperfect interface parameter.
These peak stresses are calculated at the values y � 0 or p and correspond to the e�ective stresses which
are de®ned by the relation seffective�

�������
s2
xz

p � s2
yz: In Figs. 3, 6 and 9, we note that the values of

syz
S0xz

are
much smaller than the corresponding values of sxz

S0xz
, when the remote stress is S0xz: Thus, the e�ective

stresses are mainly determined by sxz
S0xz
: Furthermore, at the values y � 0 or p, the e�ective stresses is

equal to the values of sxz
S0xz

, because the values of
syz
S0xz

are zero. The maximum peak stresses in Fig. 12
correspond to values of the parameter h�: For the circular inclusion, we know that the maximum peak
stress appears at h � 1 (see Ru and Schiavone, 1997). However, for the elliptic inclusion, the maximum
peak stresses are related to the imperfect interface parameter and the aspect ratio. To explain this, we
note that for the present interphase layer model (Hashin, 1991b), in order to keep the thickness of the

Fig. 8. E�ect of the imperfect interface parameter h on the average stress � �sxz
S0xz
� inside the inclusion when the remote stress is S0xz:
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adhesive layer between the elliptic inclusion and the matrix uniform, unlike the innermost edge, the
outer edge of the interphase layer cannot be elliptical. This is why, in the case of a homogeneously
imperfect interface, values of h� correspond to di�erent local maximum stresses for di�erent values of
the aspect ratio a/b (for the circular inclusion with homogeneously imperfect interface, the outer edge of

Fig. 9. Non-uniformity of stress along the interface when the remote stress is S0xz with a=b � 9:

Fig. 10. The stress distributions along the x and y axes for the remote stress S0xz with a=b � 9:
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the interphase layer is circular). This makes the stress distributions along the interface extremely
complicated in the case of an elliptic inclusion.

5.2. Eigenstrain problem

By a suitable choice of eigenstrain in S2, the problem considered in Section 5.1 (remote loading with
no eigenstrain in S2) can be shown to be equivalent (in the sense that the stress ®eld induced within S2 is
equivalent) to one in which, the remote loading is zero. In fact, if A is the remote loading parameter, we
choose the eigenstrain o such that8>><>>:

o� �o
R�2
� ÿA

�o� o
R�2
� ÿ �A

�)

8>>><>>>:
o � ÿR

�2�AR�2 ÿ �A�
R�4 ÿ 1

�o � ÿR
�2� �AR�2 ÿ A�
R�4 ÿ 1

�28�

It is worth noting that for the above condition, the stress distribution in the eigenstrain problem is
equivalent (to that with remote loading and no eigenstrain in S2) only within the inclusion, and not in
the matrix. For example, the stress distribution in the matrix along the x-axis, in the case when a=b � 3,
is presented in Fig. 13. In the case of remote mechanical loading, all stresses in the matrix tend to sxz

S0xz
�

Fig. 11. The relationship between h� and a=b:
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Fig. 12. The e�ective peak stress along the interface varies as a function of the imperfect interface parameter h when the remote

stress is S0xz:

Fig. 13. The stress distribution with a=b � 3 for the matrix along x axis with di�erent h when: (a) remote mechanical loading S0xz;

(b) eigenstrain loading.
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1 when x tends to in®nity, as expected. On the other hand, for the eigenstrain loading, all stresses tend
to sxz

S0xz
� 0 in the similar situation.

6. Conclusions

This paper presents a semi-analytic solution of the problem of an elliptic inclusion with
homogeneously imperfect interface in anti-plane shear. The results show that the interface imperfection
has a signi®cant e�ect on stress ®elds in and near the inclusion (along the interface). The non-uniformity
of stress is closely related to the interface parameter describing the imperfection and the aspect ratio of
the ellipse. It has also been indicated that the de®nition of the imperfect interface and the physical
explanation of the interface parameters used in Hashin (1991b) are indeed suitable for describing the
nature of the interface.

Our calculations show that using only average stress is insu�cient to describe the debonding and
failure of the material interface, since both are controlled by interfacial stresses which are themselves
closely related to the imperfect interface condition. Furthermore, it has been shown that the e�ect of the
imperfect interface parameter h on the average stress inside the inclusion increases with the aspect ratio
of the ellipse. In particular, our results indicate that it is possible to predict and control the debonding
and failure of the interface by identifying a distinct value �h�� of the interface parameter which depends
on the aspect ratio of the ellipse and the properties and thickness of the adhesive layer between the
elliptical inclusion and the matrix. This is a direct consequence of the fact that values of h� correspond
to maximum peak stress along the interface. Furthermore, we have shown that, for a speci®c aspect
ratio, it is possible to avoid or minimize peak interfacial stress by adjusting m1 (the shear modulus of the
matrix) and the thickness of the interphase layer.

Appendix A. In®nite series representation for the expression
�����������������������
1� b�sin2y

p
In order to solve the Eq. (20) using in®nite series, it is necessary to ®nd a series representation for the

expression
�������������������������
1� b�sin2 y

p
: To this end, note that for any integer k,� 2p

0

�������������������������
1� b�sin2 y

p
sin kydy � 0,

� 2p

0

�������������������������
1� b�sin2 y

p
cos�2k� 1�ydy � 0: �A1�

Thus,� 2p

0

�������������������������
1� b�sin2 y

p
cos
�
2�k� 1�

�
ydy �

� 2p

0

�������������������������
1� b�sin2 y

p �
cos�2ky�cos�2y� ÿ sin�2ky�sin�2y�

�
dy �

� 2p

0

�������������������������
1� b�sin2 y

p
cos�2ky�cos�2y�dy� 4k

3b�

� 2p

0

�������������������������
1� b�sin2 y

p �
1� b�sin2 y

�
cos�2ky�dy �
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1

2

�
1ÿ 2k

3

�� 2p

0

�������������������������
1� b�sin2 y

p h
cos
�
2�k� 1�y

�
� cos

�
2�kÿ 1�

�i
dy

� 2k�2� b��
3b�

� 2p

0

�������������������������
1� b�sin2 y

p
cos�2ky�dy �A2�

If we de®ne

I2k � 1

2p

� 2p

0

�������������������������
1� b�sin2 y

p
cos�2ky�dy �A3�

we have I2k � Iÿ2k and�
1

2
� k

3

�
I2�k�1� �

�
1

2
ÿ k

3

�
I2�kÿ1� �

2k�2� b��
3b�

I2k �A4�

Next, writing�������������������������
1� b�sin2 y

p
�
X1
k�0

I2k
ÿ

ei2ky � eÿi2ky
�
: �A5�

we note that, for large k, the right-hand side of Eq. (A5) approaches a geometric series. To ®nd the
ratio of this geometric series, let us assume that for large k,

I2�k�1�
I2k

� Z:

Also, for large k, Eq. (A4) can be reduced to:

I2�k�1� � ÿI2�kÿ1� �
2�2� b��

b�
I2k:

Consequently,

Z2 � 1ÿ 2
2� b�

b�
Z � 0 �A6�

Noting the expressions for b� and R� in Eqs. (7) and (12), we have

Z � 2� b�

b�
ÿ

������������������������
2� b�

b�

�2
s

ÿ 1 � 1

R�2
< 1, �A7�

which implies that the geometric series is convergent. We can now rewrite Eq. (A5) as:�������������������������
1� b�sin2 y

p
�
XMÿ1
k�0

I2k
ÿ

ei2ky � eÿi2ky
�
�
X1
k�0

I2�M�k�
�

ei2�M�k�y � eÿi2�M�k�y
�

and consider the second term on the right-hand side as a geometric series (approximately).
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Thus,

�������������������������
1� b�sin2 y

p
�
XMÿ1
k�0

I2k
ÿ

ei2ky � eÿi2ky
�
� I2M

"
ei2My

1ÿ Z ei2y
� eÿi2My

1ÿ Z eÿi2y

#
�

XMÿ1
k�0

I2k
ÿ

ei2ky � eÿi2ky
�
� I2M

ei2My � eÿi2My ÿ Z
�

ei2�Mÿ1�y � ei2�1ÿM�y
�

1� 1

R�4
ÿ 1

R�2
� ei2y � eÿi2y�

�A8�

The expression (A8) is su�ciently accurate for a given suitably large number M.
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